
1

Scriptable Object Editor for Unity

Overview

The Scriptable Object Column Editor transforms Unity’s ScriptableObject workflow
into a powerful, spreadsheet-style grid view directly within the Editor. You can browse,
filter, sort, batch-edit, duplicate, delete, and rename ScriptableObject assets without
writing custom inspectors or relying on individual Update loops. Column definitions
(built-in actions or serialized properties) are auto-detected and fully customizable, and
your layout persists per-type across sessions.

Key Features

• Dynamic Columns: Automatically detect all serialized fields on a
ScriptableObject type and expose them as columns.

• Built-In Actions: Copy, Delete, and Rename actions appear as dedicated
column buttons.

• Inline Editing & Batch Changes: Edit floats, ints, strings, colors, object
references directly in-cell, and apply changes across multiple selected rows.

• Per-Column Filtering: Open a filter popup on any column header, enter text, and
filter the grid in real time

• Sortable Headers: Click any header to sort ascending/descending, with type-
aware sorting for colors and names.

• Drag-Resize & Reordering: Intuitive grab-and-drag resizing on column edges,
plus drag-and-drop reordering with persistent order.

• Persistent Layouts: Automatically save and restore column order, widths, and
active tab selection via EditorPrefs.

• EditorWindow-Only: No scene components or runtime overhead—everything
runs in an EditorWindow context.

Getting Started

1

In Unity’s menu bar, go to Window → Energise Tools → Scriptable Object Editor.

2

On the Asset Management tab, set your target folder and optionally restrict to a
specific assembly.

Pick the ScriptableObject type you wish to inspect (with live search and “Include
Derived” toggle).

Interface & Workflow

Tabs

• Hide: Minimal UI placeholder.

• Asset Management: Choose asset folder, refresh assemblies, filter types.

• Stats: View total and filtered memory usage and object count.

Grid Controls

• Create New: Use the “+” toolbar button and count field to generate one or more
new assets.

• Clear Filters: Click the filter-eraser icon to reset all column filters.

• Clear Selection: Use the “X” icon to deselect all rows.

Columns & Cells

• Copy: Duplicates the selected asset to a unique path.

• Delete: Removes the asset file from disk.

• Instance Name: Shows and lets you rename the asset; commits via
AssetDatabase.RenameAsset.

• Property Columns: Display any serialized field with appropriate controls

Resizing & Reordering

• Hover the right edge of a header until the resize cursor appears, then drag to
adjust width

• Click and drag away from the resize handle to reorder columns; blue overlay
indicates drop target.

Filtering

3

• Click the small search icon in a header to open the filter popup. Enter text and
Apply or Clear.

• Filters run case-insensitive against each cell’s string representation.

Sorting

• Click a header label (outside the resize area) to toggle ascending/descending
sort.

• A ▲ or ▼ indicates the sort direction.

• Color properties sort by the sum of RGBA channels.

Selection & Batch Editing

• Click selects a row; Ctrl-Click toggles; Shift-Click selects a range.

• When multiple rows are selected, editing any cell in a property column applies
the new value to all selected rows.

Persistence

• Column order, widths, and active tab choice are saved per ScriptableObject type
using EditorPrefs.

• Filter strings are reset on window close or via “Clear Filters.”

Use Cases

• Bulk Asset Management: Rename, duplicate, or delete dozens or hundreds of
configuration assets at once.

• Data Tuning: Adjust numeric or color values across many assets without
opening individual inspectors.

• QA & Content Iteration: Provide non-technical team members with a
spreadsheet-style view of game data.

Requirements

• Unity Version: 2019.4 LTS or newer

• Render Pipelines: URP, HDRP, or Built-in supported

4

• Dependencies: None (uses only UnityEditor and UnityEngine assemblies)

7. Support & Feedback

Any questions, comments, requests, please contact:

energisetools@gmail.com

https://discord.gg/vpCbqQMdPJ

