Сап, как найти точку, которая гарантированно принадлежит многоугольнику? Нужен простой способ без дальнейших перепроверок.
Пробовал юзать среднее число от внутреннего угла <180 , однако оказывается это не всегда верно (если одна нога длинная, то там в общем все не ок). В общем-то теперь дополнительно проверяю пересечение еще.
Естественно такой способ полная хрень.
Возможно, вы знаете какую-нибудь простую внятную формулу, находящую какую-то стопудово внутреннюю точку (играющую определенную роль мб в каком-то другом алгоритме). В общем любое решение, любая точка гарантировано внутри прямоугольника, которую можно найти быстро без проверки линий на пересечение. Ваши варианты?
точки на гранях в оборот не берем
`
ОЖИДАНИЕ РЕКЛАМЫ...

Показан только небольшой набор комментариев вокруг указанного. Перейти к актуальным.
20
Ой. Я, кажется, решил :)
Находим крайнюю точку(min|max координата), берем её соседние две. Имеем три точки, треугольник. Его центр масс - искомая точка.
27
берем её соседние две
Вот тут не понял. Типа (min.x, max.y)?
20
Я фигню написал. Прошу прощения, прошу забыть :)
Точнее не фигню, эта идея выше - всего лишь часть правильного метода.

Devion, я имел ввиду две смежные точки. Есть крайняя вершина А, а есть её смежные вершины В и С.
Я думал центр масс треугольника АВС подойдёт.
Контрпример легко придумать: вогнутый четырёхугольник.
Модифицировал слегка.
Рассуждения вообще вот такие: единственный быстрый способ не оказаться за многоугольником - выбрать крайнюю точку А и две смежных с ней В и С. Тогда внутри полученного угла ищем ближайшую к А точку D(которая может совпадать с В и С), проводим окружность с центром в А и радиусом AD. Любая точка внутри полученного сектора круга(серая область на рисунке) - подходит.
Хотя мб попробовать брать треугольник АPQ, где P и Q - точки на смежных А рёбрах, лежащие очень близко к А..? Ну, чтобы не тратиться на поиск ближайшей точки.
Загруженные файлы
14
Devion, в чем проблема хранить породившие многоугольники?
27
хм, надо подумать могу ли я их заранее "узнать". Хороший совет.
Mihahail, хорошее решение. Если не получится заранее определить многоугольник (там, где я их формировал) то наверное так и сделаю.
20
Хм, если брать задачу в комментах, а не сабжевую, то я ничего не буду рекомендовать, ибо не знаю, что именно разрабатывается. Полную бы задачу услышать, но уповаю на то, что иного выхода, кроме того, что в посте - нет :)
Этот комментарий удален
27
alexprey, Пока нет. Отложил задачу до понедельника.
Mihahail:
Хотя мб попробовать брать треугольник АPQ, где P и Q - точки на смежных А рёбрах, лежащие очень близко к А..? Ну, чтобы не тратиться на поиск ближайшей точки.
Такой способ не подходит, ибо угол, слишком близко к A может все попортить
На другой случай который ты предложил я таки смог найти контрпример где опять же нужно проверять пересечения.
Причем соль в том что такую картину можно сделать даже на выпуклом углу (от смежной точки можно создать пересечение отделяющее от ближайшей D)
Загруженные файлы
20
Хм, ты прав.
Хотя, похоже, что это возможно лишь в тупом угле. Тогда можно просто искать острый.. Хотя не факт, что он есть:)
Можно попробовать проверять каждую грань на пересечение с отрезком AD(в моих обозначениях), но это вроде как долго. Ещё можно искать не крайнюю точку, а крайнее ребро, но пока это у меня поток мысли, без идей.
Узнал, что проверить принадлежность точки невыпуклому многоугольнику можно за линейное(aka полиноминальное) время. habrahabr.ru/post/161237
А вики утверждает следующее:
Задачу о принадлежности точки произвольному простому многоугольнику можно рассматривать как частный случай задачи о локализации точки в планарном подразбиении. Для N-угольника эта задача может быть решена за время O(log2 N) с использованием O(N) памяти и O(N log N) времени на предобработку.
Но хз, можно ли вычислить нужную точку за полиноминальное время.
Можно попробовать придумать стохастический алгоритм, если проверка реально быстра.
Если придумается решение, то нужно обязательно на хабр запостить.
27
Если придумается решение, то нужно обязательно на хабр запостить.
Зачем? :)
Показан только небольшой набор комментариев вокруг указанного. Перейти к актуальным.
Чтобы оставить комментарий, пожалуйста, войдите на сайт.